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Equation of motion for interacting pulses
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We develop a systematic method of deriving the equation of motion for interacting fronts or pulses in
one dimension. The theory is applicable to both dissipative and dispersive systems. In the case of the
time-dependent Ginzburg-Landau equation, which is a typical example of a dissipative system, the front
equation obtained is the same as has been obtained previously. The pulse interaction is also derived for
the Korteweg—de Vries equation, emphasizing the difference between the cases with and without dissipa-

tive terms.

PACS number(s): 47.54.+r, 52.35.Sb, 74.20.De

I. INTRODUCTION

In this paper, we shall study dynamics of interacting
pulses in one dimension. A systematic theory is
developed to derive the equation of motion for a pair of
pulses. Our method does not rely on the existence of
Lyapunov or free energy functional of the time-evolution
equation. Furthermore, the theory can be applied equally
to both dissipative and dispersive systems. The basic as-
sumption is that the distance between two pulses is much
larger than the pulse width.

In order to illustrate our method, we consider two
representative systems. One is the kink-antikink interac-
tion in a time-dependent Ginzburg-Landau (TDGL)
equation which is familiar in the theory of phase transi-
tions. The TDGL equation in one dimension takes the
following form for the field variable u:
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(1.1

where € is a positive constant. The nonlinear function
f(u) is given by
flw=lu(1—u?) . (1.2)

Note that Eq. (1.1) can be written as

ou__sr "
where

Flu}= [ dx £ |8 2+W(u> (1.4)

2 | ox ’ )

with dW /du = — f. Thus, the TDGL equation (1.1) is a
typical example of a dissipative system with a free energy
(Lyapunov) functional F{u}.

The TDGL equation has a nonuniform equilibrium
solution,
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u(x,t)==+U(x)==*tanh(x /2¢) , (1.5a)
where U (x) satisfies
2
29U r=o0. (1.5b)
ox

We call the solution with the plus (minus) sign a kink (an
antikink). When there is a pair of kink and antikink in an
infinite extended system, the kink and antikink have to
move because such a configuration of u is not a stationary
solution of (1.1). This problem was addressed by
Kawasaki and Ohta [1]. They derived the interaction of
a kink-antikink pair assuming that the kink width € is
sufficiently small compared to the distance between the
kink and antikink positions. The interaction was found
to be attractive. Later, Carr and Pego [2] also considered
the same problem relying fully on the existence of the free
energy functional F{u}. Their result is consistent with
that of Kawasaki and Ohta except for a minor difference
of a factor of two in the interaction strength [3].

The other example is the Kortweg—de Vries (KdV)
equation with dissipative terms:

u o*u
ax?  oax*

du du . du
ot eut 4+ S+
ar T T T

=0, (1.6)

where a is a positive constant. Equation (1.6) was first
derived and studied by Benney [4] and is called some-
times Benney equation. As is well known, Eq. (1.6) is
completely integrable when the dissipative terms are ab-
sent, i.e., a =0. The KdV equation admits propagating
pulse (soliton) solutions. Because of the integrability, the
collision of a pair of pluses can be analyzed in a rigorous
manner. However, a completely integrable system is
quite exceptional in nature. Some dissipation such as
(1.6) is not avoidable in any realistic systems. Therefore,
to develop a systematic method of deriving the pulse in-
teraction is necessary for a perturbed KdV equation
which is not integrable any more.

There are several previous results for the pulse interac-
tion of KdV equation and its modified version. The in-
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teraction for a dispersive KdV equation with a fifth
derivative term was performed in Refs. [5] and [6].
Kawahara and Takaoka [7] derived the equation of
motion for pulses of (1.6) with a*0. However, it seems
to us that the validity of their results is questionable since
the equation of motion obtained has a time-reversal sym-
metry despite the fact that the starting equation (1.6)
does not.

The pulse interaction in a dissipative system with no
Lyapunov functional has been studied by Yamada and
Nozaki [8]. They have considered the FizHugh-Nagumo
equation which is a model equation for pulse propagation
along a nerve axon [9]. Although their method is close
somehow to ours, they have not applied it to dispersive
systems.

As was mentioned in the beginning of this section, the
purpose of this paper is to develop a systematic theory of
interaction pulses, which is capable of dealing with both
dissipative and dispersive systems in a unified way. We
emphasize that arbitrary parameters contained in a pulse
solution play a central role in the coarse-grained descrip-
tion of pulse dynamics. A simple but nontrivial example
in a continuum system is the position of a localized solu-
tion. Its specification violates the translational symmetry
of the system and hence the position is a kind of Gold-
stone mode. Thus, when we consider weak deformations
of a localized solution, the position is a relevant slow
variable. This is the basic idea in the theory of interface
and/or phase dynamics [10].

However, one often encounters the situation where
there are several free parameters. The pure KdV equa-
tion is a typical example since the velocity of a propaga-
ting pulse as well as its position is arbitrary. Thus, one
needs to take into account the extra degrees of freedom
associated with the velocity deviation to formulate the
pulse dynamics. What is remarkable in this problem is
that when a weak dissipation is present as in (1.6) the ve-
locity is uniquely determined asymptotically. Thus, one
can see how the pulse dynamics is altered by this velocity
selection. This is another reason as to why we are con-
cerned with KdV equation in the weak dissipation limit.

In Sec. II we derive the interaction of kinks in the
TDGL equation (1.1) while in Sec. III we consider the
pulse interaction in the pure KdV equation. The effects
of the dissipative terms in the limit a —0 will be studied
separately in Sec. IV. The final section (Sec. V) is devoted
to discussions. Some technical details of the solvability
condition used in Sec. III are described in Appendix.

II. KINK-ANTIKINK INTERACTION
IN TDGL EQUATION

First, we consider the kink-antikink interaction in the
TDGL equation. Although the results in this section are
not essentially new, the many formulas obtained here will
be useful in the study of the pulse interaction in the later
sections.

Suppose that there are a kink at x =x, and an antikink
at x =x, (>x,). We assume that x, —x,; >>¢, where ¢ is
the width of kink and antikink. In this situation, we may
put the solution u (x,¢) of (1.1) as
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u(x,t)=U(x)+b(x,1), 2.1
where

Ux)=U(x —x,)—U(x —x,)—1. (2.2)

The function U(x) is a superposition of the kink-antikink
pair and b (x,t) stands for a deviation which is expected
to be small when x, —x;>>e. Our aim is to derive the
time-evolution equation for the positions x, and x,.

As was discussed in Ref. [1] and at the end of this sec-
tion, the small parameter in the present problem is
exp[ —(x,—x,)/2e]. As a result, one will see that the
motion of interacting kinks is very slow and is of the or-
der of exp[ —(x,—x,)/e]. However, we do not intro-
duce a scaled time in the theory shown below because no
confusion is expected to occur.

Substituting (2.1) into (1.1) yields up to order b,

—%, U +x,U5+b,=Lb+f(U)—f(U)+f(U,),
2.3)

where the dot means the time derivative and the prime
the derivative with respect to the argument. We have
used abbreviation of notations such that U;=U(x —x;).
Note that U, and U, satisfy Eq. (1.5b). Hence, Eq. (2.3)
is exact up to O (b). The linear operator L is defined by
L=e9 1 (o) 2.4)
dx? ' '
Hereafter, we focus our attention on the motion of the
kink position x;. In the vicinity of x =x, the tail of the
antikink 1+ U, is negligibly small so that one may use
the following expansion:

FO)—f(U)+f(U,)=—3e(1+U,)U;
+3(14 U, (1-U,) , 2.5

where the relation 1— U2 =2¢U’| has been used. Because
f(u) is a cubic function as Eq. (1.2) the expansion (2.5) is
rigorous. Note that a term of the order of (1+ U, )? is ab-
sent in (2.5). Similarly, one can replace the operator L by
L, defined by

d? ,
LGLzezw_i_f(Ul) .

2.6
Since Lg; is the operator which appears in linearization
of (1.1) around a kink solution, it is obvious that it has
zero eigenvalue A,=0 with the (unnormalized) eigenfunc-
tion ®=U]. This is simply the translation mode of a
kink. The eigenvalue problem for L;; can be solved ex-
actly. See, for instance, Ref. [11]. There are two discrete
states with the eigenvalues A;=0 and A;=—3. The ei-
genvalue of the continuous state is given by
A,=—(1+p*) (—w <p <o)

The equation of motion for a kink position can be ob-
tained from the solvability condition of Eq. (2.3) such
that the inhomogeneous terms should be orthogonal to
the zero eigenfunction of the self-adjoint operator Lg; .
Thus, we obtain
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x (UL, UD=—(U,fU)-fU)+f(Uy)), 2.7 fw explax) a a2 2.9
where (4,B)= [*_dx A(x)B(x). The equation for x, X Coshx 3 2 sin(7a /2) )

can also be obtained similarly. The result is the same
form as (2.7) with the replacements x; by —x, and U by
U;.

Now we evaluate the integrals in (2.7) to obtain the
equation of motion explicitly. The coefficient (U},U") is
readily calculated as

In order to evaluate the right hand side of (2.7), one may
use the expansion (2.5):

—(U,, f(O)—fU)+£(U,))
=3e(U},(1+ U, U — (UL, 31+ U)X1—U,)) .

’ ’ — i
(U, UN=%", (2.8) (2.10)
where we have used the formula for |a| <4, The first term in (2.10) can be written as
J
3e(U;, 1+ U)UD=1 [ dz 1+tanh |z — 22
1’ 2 cosh“z 2e
L 1 hd X7 X w 1
~3 dz (—1)" " lexp(2nz)ex +3| dz , .11
f— «  cosh’z ,El P P 2e f L cosh’z
[
where L =(x,—x,)/2¢ and we have used the expansion tially by the expansion in terms of exp[ —(x,—x;)/2¢].

forz <0

1+tanhz =2 3 (—1)" "lexp(2nz) .

n=1

(2.12)

Up to order of exp[ —(x,—x,)/e], one may retain only
the n =1 term in (2.11) and extend the integral domain
from — o to «. Using the formula (2.9) again, we obtain

X, =12eexp[ —(x,—x,)/¢€)] . (2.13)

This is consistent with that obtained by Carr and Pego
[2].

Kawasaki and Ohta [1] obtained the same result but
with the coefficient 6 instead of 12. This discrepancy
originates from the fact that they employed the following
approximation:

—Xx,

1+ U,~2exp (2.14)

However, the proper treatment up to order
exp[ —(x,—x,)/e] is to use (2.11) as shown above.

The equation for the antikink position x, is the same
form as (2.13), except for the minus sign in front of the
right hand side. Recall that we have put x, >x;. Thus,
we note that x, increases with time whereas x, decreases.
This means that the kink-antikink interaction is attrac-
tive although the strength is very small for
(x,—x,)/e>>1 as we have assumed. A kink-antikink
pair annihilate upon collision in this dissipative system.

We make a remark that our method presented here is
not limited to the lowest order. (2.11) shows that the
next order correction is of the order of
[(x,—x,)/elexp[ —2(x,—x,)/e]. The corrections aris-
ing from the second term in (2.10) can also be evaluated
similarly which is of the order of exp[ —3(x,—x,)/2¢].
These indicate that the corrections can be obtained essen-

Furthermore, the eigenvalue problem associated with
(2.4) is solved by a perturbation expansion. Thus, the
higher order corrections in the kink interaction can, in
principle, be calculated without any difficulty.

III. PULSE INTERACTION IN KdV EQUATION

In this section, we derive the pulse interaction of Eq.
(1.6) without the dissipative terms, i.e., a =0. In this
case, one pulse solution is well known and is given by

Vv
u(x,t)=Vic,x —ct)=%sech2 Tc(x —ct) |, (3.1a)
where V (c,x —ct) satisfies
—Cﬂ+6V d V+— 4 =0. (3.1b)
ox ax ax?

It should be noted that the velocity of the propagating
pulse denoted by c is not specified but an arbitrary posi-
tive constant.

We consider the interaction of two pulses located at
x =x,(t) and x,(¢) propagating with almost identical ve-
locities. The distance x,—x, is assumed to be much
larger than the pulse width 1/ V/c. The solution u (x,?)
can be written as

u(x,t)=Vi(c+x;,x —ct —xy)

+V(c+x,,x —ct —x,)+b(x —ct,t) . (3.2)

We assume that %, and X, which arise from the interac-
tion are sufficiently small compared to ¢. This will be
checked self-consistently in the final results. Substituting

(3.2) into (1.6) with @ =0, one obtains up to O (b),
b,=Mb+g , (3.3a)

where
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= (c +x )aV + il
g= i=2 X; a ¢ X))o PWE
and V;=V(c +%;,x —ct —x;) (i =1,2). The operator M
is given by
d 3’ a3
=Cc——— - 4
M= “ax a3 =, 6 (3.4a)

Now we examine the property of the operator M. In
the vicinity of the position x =x,, the pulse solution ¥,
is sufficiently small so that one may ignore ¥, in (3.4a).
Thus, the operator M is simplified as

(3.4b)

Here, and in what follows, we occasionally omit the suffix
1 in ¥V, when no confusion arises. One of the zero eigen-
functions of M is given, as in the case of the TDGL equa-
tion, by
av
¢, = . 3.5

1= ax (3.5a)
It is emphasized, however, that there is another zero
eigenfunction for M, which is given by

_9v

2= 30 (3.5b)
In fact, it is readily shown that
Mo,=—d, (3.6a)
and hence
Md,=—Md,= (3.6b)

The relation (3.6a) cam be obtained from (3.1b) by
differentiating it with respect to c¢. This property is a
consequence of the fact that the speed c in the pulse solu-
tion (3.1) is arbitrary in the KdV equation. The degen-
eracy of the zero eigenstate requires caution in applying
the solvability condition for (3.3) as will be shown below
and in Appendix.
We need to introduce the adjoint operator M tof M:

te o0 4 8 9
M cax-i-a +6(V‘+V2)ax
9 3’ d
cax—i-a 3-|—6Vla (3.7a)

Thus, we have essentially the same eigenvalue problem as
in the previous section:

2
—c+6V,+-2= |y=1y . (3.7b)
dx

In this case, however, there are three discrete and one
continuous states [11]. The eigenvalues of the discrete
states are given by A_;=5c /4, A;=0, and A,=—3c /4.
The eigenfunction ¥ for the zero mode is
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Ve Ve
3 z |tanh > z|, (3.8)

¥= —sech?

where z=x —x,. The zero eigenfunction ¥ of M T s,
therefore, obtained by integrating ¥ under the condition
V0forz—tw),

W=sech? | — (3.9a)

Without loss of generality, one may equate it with ¥,
Y(x)=V(cz) . (3.9b)

Note that there is no other localized zero mode. It
should be mentioned here that only the zero eigenfunc-
tion 9 is related with ¥ as d¥/dz=1. Other eigenfunc-
tions do not have such a simple relation.

Now we derive the equation for x ;. Since the operator
M is not self-adjoint and has degenerate zero states, it is
not a priori obvious whether or not the orthogonality
condition for ¥ and the inhomogeneous term in (3.3a) is
the proper solvability condition. What one should re-
quire is that the solution b in (3.3a) must be bounded for
t— . In the Appendix, we prove that this is indeed
equivalent with the condition:

(g,¥)=0 (3.10a)
This leads us to the equation for x|,
X L V,|+6 —a—V, V,, Vi (3.10b)
' ae * ! ax

where we have used
(aV,/3x,V)=0 and
(x,—x,)/V'ec >>1. Since

(3.1b) and the facts that
(aVz/aC,Vl]zc) f01’

v, 1 z aV,
=— -— 11
3¢ ¢ % 2¢ 3z’ 3.1D)
one obtains
av, 3 Ve
Y’Vl Z(VI’VI)—T, (3.12)

where (2.9) with @ =0 has been used. On the other hand,
the second term in (3.10b) can be obtained as

3 )
Pmng =3 Ex—Vz,Vf

~8cexp[— Ve (x,—x,)] . (3.13)

In this derivation, we have used the asymptotic form
V,~2cexp[Vec(z—x,)] for z<<x, and the formula
(2.9) with @ =2. From (3.10b), (3.12), and (3.13) one ob-
tains up to order of exp[ — V¢ (x,—x,)],

%,=—16¢"%exp[ —Vc (x,—x,)] . (3.14)

The equation for x, is given by changing X, by —X,.
Thus, the pulse interaction is found to be repulsive in this
case. As in the case of the TDGL equation in the previ-
ous section, the higher order corrections to (3.14) can be
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obtained by the
exp| —Vz(xz—xl )]
The distance /(t)=x, —x, obeys

I'=32¢%"exp[—Vel(1)] .

expansion in  powers of

(3.15)

One can study the collision of two pulses by solving Eq.
(3.15). Since the interaction is repulsive, there must be a
minimum distance /;, (turning point) where two pulses
change their propagating direction in the moving frame
with the velocity ¢. From (3.15), one obtains

2 8¢
l = In— .
min = /= In Ac (3.16)
where Ac is the relative velocity at t = — «. The position

shift after collision can be obtained rigorously from the
two-pulse solution [12]. If one equates it with /,;, one
notes that the rigorous result gives us (3.16) with the fac-
tor 4c instead of 8c. This is not surprising because Eq.
(3.15) is an_ asymptotic result correct for
(x,—x,)>>1/Ve.

The result (3.14) can be generalized to an n-pulse sys-
tem. Then the equation of motion for the positions x;
(i=1,...,n) is found to be given by the Toda lattice
equation [5,6] which is also completely integrable. This
is an important feature of our method in the sense that
the complete integrability of the starting KdV equation is
preserved under the reductive representation of the pulse
interaction in terms of {x;}.

IV. PULSE INTERACTION
IN BENNEY EQUATION

When the KdV equation has a dissipative term as (1.6),
the interaction among pulses is expected to be modified
qualitatively. Here, we explore this problem in two steps.
First, when the dissipative terms are present, the speed of
the propagating pulse is shown not to be arbitrary but is
determined uniquely. Next, the pulse interaction is ob-
tained by generalizing the method in the previous section.
Throughout this section, we assume that the parameter a
in (1.6), which is a measure of the strength of the dissipa-
tive terms, is sufficiently small, 0 <a <<1.

When a is small, the effect of dissipation is expected to
appear in the time scale 1/a so that we introduce a scaled
time T =at. First, let us consider a single pulse and
determine the propagating velocity. A similar problem
has been considered in Ref. [15]. We expand u(x,?) in
powers of a

u(x,t)=ux,¢t,T)+auVx,t,T)+ - - - 4.1)

and substitute it into (1.6). The zeroth order solution is
in the same form as V(x —ct —X,,c) given by (3.1) ex-
cept for the fact that the parameters ¢ and X, may de-
pend on the scaled time 7. From the first order terms,
one obtains for uV=uV(x —ct —X,,1)

ou'l
ot

where the operator M is given by (3.4b). The inhomo-
geneous term G takes the following form

G=At+B ,

=Mu'V+G , 4.2)

(4.3a)

SHIN-ICHIRO EI AND TAKAO OHTA 50
where
dc oV
= 4c or 4.3b
dT 3z ’ ( )
__ 9% 3V _de 3V _ 3V _ 3V 630
dT 3z dT 3 93z> 3%’ '

with z =x —ct —X,,.

We need to impose the condition that the secular term
in the solution of Eq. (4.2) should vanish. This can be
achieved in the manner similar to that in the Appendix.
Using the projection operator P defined by (A2), the secu-
lar part can be written as

Pu'V(t)=(I +tM,)Pu‘P(0)

+ fo’ds{l +(t —s)M,}PG(s) , (4.42)

where [ is a unit operator and we have used the relation
(A3). Substituting (4.3b) and (4.3¢c) into (4.4a), one ob-
tains

Pu'V(t)=Pu'"(0)+¢[MPu'(0)+ PB]

+11%PA +PMB), (4.4b)

where we have ignored the slow time dependence of G
through T. Thus, the required condition is given by

PA +PMB=0. (4.5)

Substituting (4.2b), (4.2c), and (A1) with ¢ =B and noting
the relations (3.5a) and (3.6a), one finally obtains from
4.5)

v 3V
de 1 |98z ¥zt
—=— , (4.6a)
dar 2 AV -~
=¥
oz

where W has been given by (3.9b) and ¥ is defined
through the relation (A2) in the Appendix. It is readily
shown that (4.6a) is consistent with that obtained by a
direct expansion [13]. The asymptotic speed of the pulse,
which is denoted by ¢ =c*, is given by the condition

2 4
oV 9V

’ (4.6b)
dz? az*

=0.

The formulas (4.6) are correct up to the lowest order of a.

Now we consider the pulse interaction. Suppose that
there is a single pulse which obeys the pure KdV equa-
tion with a =0. We switch on the dissipative terms at
some instant. The pulse profile as well as its velocity
changes gradually to the asymptotic form with ¢ =c*.
We are concerned with the interaction between these
asymptotic pulses. We put two asymptotic pulses at
x =x, and x, and see how these pulses interact with each
other. Since the speed c (a) satisfying ¢ (0)=c™* is unique-
ly determined, we may write the solution u (x,t) of Eq.

(1.6) as
u(x,t)=V,(z—x,)+V,(z—x,)+b(z1), 4.7

with z =x —c(a)t. The one-pulse solution is denoted by
V, emphasizing the finiteness of a. It satisfies
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d? d
—C(a)—z‘*'r'f‘ﬁV d_+

(4.8)

By the same method as in Sec. ITI, we obtain the equation
for x,,

Y%, +6 a_(ValVaz)»‘l’a =0, 4.9)
where
av,
r=—1|¥,, 2z (4.10)

The function ¥, obeys the equation similar to (4.8),

2 4
&
dz*  dz*

3
—c(a)—z+d— 6v, -+ _q

Rl v,=0.

(4.11)

It should be noted that the X term does not exist in (4.9)
since the velocity has been fixed to be the terminal one
c=cl(a).

In the limit @ —0, the coefficient ¥ vanishes identically
as shown in Sec. III. Here we evaluate it by the expan-
sion in terms of a. Up to order a, V,, ¥,, and c(a) can
be written as

V,(2)=V(z)+aV'(z), 4.12a)
Y, (2)=¥(z)+a¥'V(z), (4.12b)
cla)=c*+ac'? (4.12¢)

The first order correction of the velocity has been studied
recently [14]. The lowest order solutions ¥V and ¥ are
given, respectively, by (3.1a) and (3.9b) with ¢ =c*
From(4.8) one notes that the first order correction V!
satisfies
My = 3’V + a4V_c<1)§_K )
az? ozt oz
The operator M is the same as (3.4b) with ¢ =c*. The
other correction ¥'! obeys a slightly different equation:

dv 3V | 'V d¥y
(1)_+ + =4 (e x
dz 93z 3zt ¢ Tdz

with M defined by (3.7a).
The coefficient ¥ can be expanded up to order a as

(4.13)

MiwV=_¢ep (4.14)

av
oz

aV(l)

=—qa ,pi | — s

(4.15)

In order to calculate the first term in (4.15), one notes the
relation

aw

3z’ (4.16)

ﬂ,M*\If‘”y .
dc

In this derivation, we have used (3.6a). From (4.13) and
(4.14), one obtains after putting ¥ ="V as (3.9b),
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v | v
+
322 ozt

Putting (4.15)—(4.17) together and using (3.6a) again, the

coefficient y is given up to O (a) by

v v v

_— + —_—
c’ dz2  az*

MW =pTy4y @.17)

Y=2a (4.18)

Note that a first order correction c'!’ does not appear in
(4.18). One can simplify (4.18) further. Noting the facts
that (3.11) and (4.6b) with ¥ =V, one finally obtains

av v

3z’ dz

+0(a?) .

a (4.19)
c

This clearly indicates that y is positive. (4.19) is readily
evaluated so that Eq. (4.9) can be written as

%= lioctl’»/l

exp[—Ve*(x,—x,)] . (4.20)
The result (4.20) indicates that the interaction between
two pulses turns out to be repulsive under the dissipation.
This implies that in a system having many pulses the dis-
tance between adjacent pulses tend to be equal asymptoti-
cally due to the interaction.

V. DISCUSSIONS

We have developed a systematic method dealing with
the pulse dynamics in both dissipative and dispersive sys-
tems. The method does not rely on any Lyapunov func-
tional so that it can be applied to systems far from equi-
librium. The smallness parameter of the problem takes
the form of exp(—L /b), where L is the pulse distance
and b the pulse width.

We have shown in Sec. III that any free parameters in
a one-pulse solution play an important role in the pulse
interaction. In the case of KdV equation, the fact that
the velocity is a free parameter guarantees that the pulse
equation of motion has a time-reversal symmetry. If
weak dissipation is present, the velocity is fixed and a
friction term appears in the asymptotic pulse equation of
motion. The velocity selection of a propagating pulse in
KdV equation is also formulated in the presence of small
dissipations.

Dynamics of pulse and front has often been studied by
a perturbation expansion in terms of a solvable limit. A
typical example is a complex Ginzburg-Landau equation
[15], where one may start either from a dissipative limit
as (1.3) or from a Hamiltonian limit like a nonlinear
Schrédinger equation. Perturbations generally break
some symmetry or conservation laws which exist in the
limiting systems. This makes the free parameters in the
lowest solution fix. These aspects are similar to those
studied in Sec. III.

We have emphasized that the @ —0 limit in Eq. (1.6) is
a singular limit in a sense that the propagating velocity is
uniquely determined for a0, whereas it is arbitrary for
a =0. Thus the property of the pulse interaction is quali-
tatively different in these two cases. In the presence of
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dissipations, the second derivative of the pulse position
with respect to time (the inertia term) should not exist in
the asymptotic equation of motion. This differs from the
previous theory where the inertia term is present even for
strong dissipations. In an intermediate time regime, both
inertia and friction terms are expected to exist. In fact,
Elphick, Regev, and Spiegel [16] have derived such a
pulse equation of motion from Eq. (1.6). However, their
expression looks apparently quite different from ours Eq.
(4.20) because they do not assume the smallness of a.
Since the a dependence of the coefficients is not given ex-
plicitly in their results, a direct comparison with our
theory is not possible at present.
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APPENDIX

In this Appendix, we prove that the absence of the sec-
ular term in the solution of (3.3) is equivalent with the
orthogonality condition (3.10). We confine ourselves to
the vicinity of the pulse position x =x,. Since the zero
state of the operator M is degenerate and has the eigen-
functions ®, and ®, as given by (3.5), one needs to intro-
duce a projection operator P defined by

— (@, ¥) (p,¥)
(®,F) ' (D,¥)

Py o, , (A1)
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where @ stands for the eigenspace of M. We have intro-
duced ¥ such that

MU=y, (A2)
where W is the zero eigenstate of M T given by (3.9). It

should be noted that

M?P=0. (A3)

Using the operator P, the solution of (3.3), which would
contain the secular part is given by

Pb(1)=exp(MPb (0)+ [ 'ds exp[M(t —=5)]Pg ,  (A4)
where one has ignored the time dependence of g through
x; providing that x; and X; are sufficiently small when
two pulses are distant apart. Noting the relation (A3),
the solution (A4) can be written as

Pb(t)=Pb(0)+t{MPb(0)+Pg}+1it?MPg .  (A5)

One imposes the requirement that the terms increasing
with ¢ should vanish. The second term in (AS) is un-
necessary since it simply determines the initial value
b(0). The absence of the third term in (A5) leads us to

MPg=PMg=0 . (A6)
Using (A1) with ¢ =g, one obtains from (A6)
(g,¥)=0, (A7)

where one has used the relation (A2). Thus, the ortho-
gonality condition (A7) eliminates the secular part in
(AS5).
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